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Abstract
Climate change poses a severe threat to global agricultural production and rural livelihoods, 
and since agriculture itself is a significant source of greenhouse gas (GHG) emissions, it 
can also play an important role in climate change mitigation. This article investigates how 
farmers’ social networks influence the adoption of on-farm mitigation strategies. More 
precisely, we use a network autocorrelation model to explore the relationship between a 
farmer’s own mitigation behavior and the mitigation behavior and knowledge of his fel-
low farmers. The analysis is based on a regional case study in Switzerland and uses data 
obtained from personal network interviews combined with survey and census data of 50 
farmers. Half of them are members of a local collective action initiative for agricultural 
climate change mitigation, while the others do not participate in the initiative. We find that, 
on average, farmers with a larger network adopt more mitigation measures, and further-
more, mitigation adoption is linked with the level of knowledge within farmers’ networks. 
Indeed, the likelihood that non-members will adopt mitigation measures increases if they 
are closely associated with members of the collective action, suggesting a local spillover 
effect. It follows that strengthening knowledge exchange among farmers and supporting 
local farmers’ initiatives can potentially contribute to the diffusion of agricultural climate 
change mitigation practices.

Keywords Climate change · Mitigation · Agriculture · Social networks · Knowledge 
exchange · Network autocorrelation models

1 Introduction

Global agricultural production is a major source of anthropogenic greenhouse gas (GHG) 
emissions (IPCC 2019). Consequently, since successful climate change mitigation depends 
primarily on the reduction of these emissions, it has become a major concern for poli-
cymakers and scientists (OECD 2013). Many countries have introduced emission reduc-
tion targets for their agricultural sector under the UN Framework Convention on Climate 
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Change (Fellmann et al. 2018; Richards et al. 2016). However, successful GHG mitigation 
means that farmers must actively change and adapt their practices, for example, by adopt-
ing climate friendly practices in the on-farm management of livestock, crops, or energy 
utilization (Smith et  al. 2008). Thus, a broad-based understanding of farmers’ decision-
making processes is crucial for effective mitigation and appropriate policy design.

In this article, we seek to enhance this understanding by focusing on the impact of 
social networks on farmers’ decision-making regarding the adoption of on-farm mitigation 
practices. More precisely, we use a Swiss case study to investigate the link between the 
mitigation behavior and knowledge of socially well-connected farmers and the individuals’ 
adoption of respective practices.

Previous research has shown that social networks influence farmers’ decisions in vari-
ous fields. The key assumption is that new technologies or practices spread through social 
learning, i.e., knowledge based on observation and interaction with peers and neighbors 
(e.g., Šūmane et al. 2018), also referred to as spillover or neighborhood effect (e.g., Vroege 
et al. 2020). For example, social relations influence the occurrence of farmers’ entrepre-
neurship (Fitz-Koch et al. 2018) and affect decisions relating to multiple land use, inno-
vation, and technology (e.g., Bandiera and Rasul  2006; Krishnan and Patnam  2014; 
Matuschke and Qaim 2009;). Several scholars found that social networks impact the adop-
tion of agri-environmental measures (e.g., Riley et al. 2018; Skaalsveen et al. 2020; van 
Dijk et al. 2015, 2016) and conversion to organic agriculture (e.g., Läpple and Kelley 2015; 
Wollni and Andersson  2014). The existing literature has focused mainly on so-called 
endogenous network effects (Bandiera and Rasul 2006; Manski 2000), i.e., how farmers 
learn from observing the experiences of others and base their decisions on the behavior 
of their peers. Since data is limited, very few studies have investigated exogenous network 
effects, namely the impact of certain peer attributes, e.g., age, education, etc., on farmers’ 
behavior (Keil et al. 2017; Matuschke and Qaim 2009; Murendo et al. 2018).

Recently, evidence has been found indicating positive peer influence on farmers’ uptake 
of climate change adaptation measures (Di Falco et al. 2020). However, the role of farmers’ 
social networks in the adoption of climate change mitigation remains largely unexplored. 
In particular, no study has yet investigated exogenous network effects in the context of mit-
igation. This constitutes an important research gap since GHG reduction practices are still 
relatively new to most farmers, thus making knowledge sharing and social learning particu-
larly important, also from a policy angle. Furthermore, social networks are of great rele-
vance for agricultural mitigation practices as they can help to promote cooperation between 
farmers (IPCC 2014; OECD 2012). This is essential since collaboration between farmers 
can reduce marginal costs of mitigation, which are usually high in the agricultural sector. 
For instance, economies of scale facilitate investment decisions (Bouamra-Mechemache 
and Zago 2015; Hodge and McNally  2000), and social learning can reduce the costs of 
knowledge acquisition. The coordination of land use and field operations potentially leads 
to efficient mechanisms for mitigation. In fact, farmers’ collective action and “grassroots” 
innovations1 can serve as an example to others and spread to a wider region. Up until now, 
the spillover effects of collective action for sustainable development have been viewed 

1 Grassroots innovations for sustainability are defined as “networks of activists and organizations generat-
ing novel bottom–up solutions for sustainable development; solutions that respond to the local situation and 
the interests and values of the communities involved. In contrast to mainstream business greening, grass-
roots initiatives operate in civil society arenas and involve committed activists experimenting with social 
innovations as well as using greener technologies” (Seyfang and Smith, 2007; Smith and Seyfang, 2013).
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from a rather general viewpoint or in different contexts, such as local low-impact housing, 
renewable energy production, or car-sharing (e.g., Ornetzeder and Rohracher 2013; Smith 
and Seyfang 2013), and research on the spillover effects of collective action in agriculture 
is very limited (Vaiknoras et al. 2020).

Our research contributes to this literature by exploring the characteristics of farmers’ 
personal networks with regard to exchange of knowledge related to agricultural climate 
change mitigation and their association with the actual uptake of mitigation measures. Our 
research aims to assess the role of farmers’ cooperation and collective action in the con-
text of agricultural climate change mitigation, which constitutes a key challenge facing the 
agricultural sector. We apply a network autocorrelation model to study potential network 
influence processes and local spillover effects of a farmers’ climate protection initiative. 
We thereby account for the strength and type of relationships, as well as specific, rele-
vant characteristics of network members. More specifically, we use a Bayesian approach 
which allows us to model multiple influence processes and compare them simultaneously 
(Dittrich et  al. 2020). Control variables such as age, education, farm type, or perceived 
self-efficacy are used at the individual farmer level to account for possible correlated 
effects which do not reflect social interactions (Kreft et al. 2021a, 2021b; Wuepper et al. 
2019). Our analysis is based on a combination of census, survey, and detailed network data. 
The latter was obtained through tablet-based face-to-face interviews with 50 farmers in a 
Swiss region.

Our main contributions are threefold: Firstly, we investigate how social learning among 
connected farmers influences the adoption of on-farm climate change mitigation meas-
ures. Secondly, we assess how the presence of climate change mitigation knowledge within 
farmers’ personal social networks affects their adoption decisions. Thirdly, we explore 
how the spillover of a local farmers’ collective climate protection action group influences 
the adoption of mitigation measures in the wider region. Our results help to deepen the 
understanding of farmers’ adoption decisions in the context of agricultural climate change 
mitigation and highlight the role of social networks. This can help to inform policymak-
ers when deciding upon effective and efficient policy instruments to incentivize climate 
friendly agriculture.

The remainder of this article is as follows: Section 2 provides the theoretical background 
on farmers’ social networks and adoption of agricultural climate change mitigation as well 
as the hypotheses tested in this article. Section 3 introduces the autocorrelation model used 
for assessing the associations between certain network characteristics and mitigation adop-
tion. Section 4 describes the case study followed by Section 5, which presents data and 
data collection. Section 6 contains descriptive and estimation results and is followed by a 
discussion in Section 7 and conclusions in Section 8.

2  Theoretical background and conceptual framework

Our conceptual framework is based on the social network theory (Borgatti and Ofem 2010) 
and the concept of social learning (Foster and Rosenzweig 1995) whereby it is assumed 
that individual behavior is influenced by interaction with peers, also referred to as herd 
behavior, spillover, neighborhood, or peer effect (e.g., Granovetter  1978). Three pos-
sible network effects can be identified: endogenous effects (impact of network members’ 
behavior), exogenous effects (impact of network members’ characteristics), and correlated 
effects (resemblance between individual’s behavior and that of their network due to similar 
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environment, e.g., access to the same extension service) (Keil et al. 2017; Manski 2000). 
The first two effects can, to some extent, be explained by social learning, essentially 
defined as learning by observing others and interacting with them.

2.1  The role of social networks in farmers’ adoption behavior

The analysis of farmers’ social networks and social learning has emerged as a key tool for 
understanding adoption decisions. In general, close ties to other farmers facilitate knowl-
edge spillovers and information flow related to new agricultural technologies, such as 
improved seeds and varieties (e.g., Conley and Udry 2010; Krishnan and Patnam 2014) or 
knowledge-intensive practices such as no-tillage farming (e.g., Ingram 2010; Skaalsveen 
et al. 2020).

However, whether and how social learning actually occurs depends on many factors 
such as the complexity of the technology (Wuepper et  al. 2017), heterogeneity of farm-
ing conditions (Munshi 2004), number of adopters (Bandiera and Rasul 2006), or struc-
ture of the network. For example, centralized networks and links to key actors are found 
to facilitate the rapid diffusion of information (Peres 2014). Since most farmers prefer to 
seek advice from key network members rather than from less connected colleagues, core-
periphery network structures are often observed, i.e., farmers who are less connected most 
frequently approach a small group of socially well-connected key farmers when seeking 
advice (Isaac et al. 2007). Generally, a dense, widely connected network promotes success-
ful collaboration (Bodin and Crona 2009). At the same time, relations to disparate groups 
might provide novel information and thus encourage innovation (Levy and Lubell 2017).

To date, there are few studies which focus on both endogenous network effects and 
the potential exogenous effects of farmers’ social networks (Matuschke and Qaim 2009; 
Murendo et  al. 2018). Only one study found evidence that network members’ character-
istics (namely education level) influence individual farming behavior (adoption of no-till 
practices) (Keil et al. 2017). However, the influence of exogenous effects on adoption deci-
sions might depend on the specific situation and technologies.

2.2  Agricultural climate change mitigation and farmers’ collective action

Farmers’ collective action is increasingly recognized as an important approach to the man-
agement of agri-environmental problems (Bamière et al. 2013; Dupraz et al. 2009; Mills 
et al. 2011; Prager 2012, 2015; Vanni 2013). Similarly, it could also enhance effective strat-
egies for agricultural climate change mitigation. Firstly, a single farmer’s efforts are simply 
not enough to reduce GHG emissions to any significant extent (OECD 2012, 2013). Sec-
ondly, GHG reduction is assessed as a classic collective action problem including chal-
lenges, such as freeriding, which can be overcome by farmers’ collaboration (Agarwal and 
Dorin  2017; Ostrom  1990; Stallman  2011). Given that climate change mitigation often 
involves new and unfamiliar measures, the role of knowledge exchange within farmers’ net-
works is particularly important and can potentially shape perceptions on costs, risks, and 
benefits of mitigation. Moreover, this learning and knowledge sharing can spread beyond 
the scope of the collective action scheme through ties between members and non-members 
(Bernard and Spielman 2009; Ornetzeder 2001).
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2.3  Hypotheses: network effect, knowledge diffusion, and collective action 
spillover

Based on the theory outlined above and findings from previous empirical research, we 
derive three hypotheses (supplementary material, Figure S1):

1. Endogenous network effect hypothesis (H1)

Farmers’ adoption of mitigation strategies is positively associated with strong social 
ties to other farmers who have adopted mitigation practices.

2. Knowledge diffusion hypothesis—exogenous effect (H2)

Farmers’ adoption of mitigation strategies is positively associated with strong 
social ties to farmers they deem to be knowledgeable about agricultural climate change 
mitigation.

3. Collective action spillover hypothesis (H3)

Farmers’ adoption of mitigation strategies is positively associated with ties to farm-
ers participating in a collective action scheme to reduce agricultural GHG emissions.

3  Methods

All of our hypotheses describe social influence processes linking network structure 
(exchange relations of farmers) with individual level traits (adoption of mitigation strat-
egies). An inherent feature of analyzing social influence processes in networks is that it 
cannot be assumed that the traits of interest (the dependent variable, here farmers’ adop-
tion of mitigation strategies) are independent from each other. In fact, we explicitly want 
to study how the expression of a dependent variable yi of an actor i is associated with its 
expressions yj, yk in an actor’s network contacts j and k. Therefore, we test our hypoth-
eses using a network autocorrelation model (Dittrich et al. 2020).

Network autocorrelation models are an extension of normal regression models, 
which integrate one or more network autocorrelation parameter capturing the processes 
through which we assume network influence to occur. The network autocorrelation is 
estimated by specifying one or multiple weight matrices W to capture our theoretical 
models of influence relations. These weight matrices are used to add a weighted sum 
of attributes for an actor’s network neighbors to the linear predictor of the regression 
model for each actor. For a single influence process acting through W, with g actors in a 
network, the model can be written as:

where ρ is the network autocorrelation parameter capturing the strength of the network 
influence process. X is a covariate matrix as in a standard linear regression (captur-
ing other, actor-level covariates that the model adjusts for) with associated regression 

(1)y = �Wy + X� + �, � ∼ N(0g, �2Ig)
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coefficients in the β vector. The error terms are assumed to be independent and identi-
cally distributed2.

We use a recently proposed, new Bayesian implementation of the network autocorrela-
tion framework (Dittrich et al. 2020) that allows us to test our hypotheses by simultane-
ously estimating parameters relating to the strength of different autocorrelation processes 
occurring within four sub-networks of the overall network. Testing our hypotheses within 
this framework implies the use of four different model specifications.

The first model, corresponding to Eq. (1) (simple network influence), is a first-order net-
work autocorrelation model containing a single network weight matrix to estimate network 
autocorrelation understood as a single process acting uniformly throughout the whole net-
work. If we choose a weight matrix W to measure relations among farmers and the strength 
of these relations, an initial test of H1 can be carried out based on the resulting posterior 
distribution of ρ.

The second model, corresponding to Eq. (2), adds the coefficient βnet _ knowledge esti-
mating the association between the aggregated knowledge of network contacts about cli-
mate change mitigation and farmers’ mitigation behavior. The model still uses the form 
described in (1), and the coefficient is estimated based on a variable in the covariate matrix 
X. The posterior distribution of βnet _ knowledge allows for a test of H2.

The third model is a fourth-order network autocorrelation model (3), which assumes 
different strengths of network autocorrelation within and between collective action par-
ticipants and non-participants. To this end, the adjacency matrix W is rearranged into four 
weight matrices Waa, Wab, Wbb, and Wba, which only contain entries on their respective 
process of interest and are separately row-standardized (Dittrich et al. 2020). Waa denotes 
the sub-network of relations among participants and Wbb among non-participants, and Wab 
and Wba indicate an exchange between groups.

With the collective action participants as a network subgroup a and non-participants as 
subgroup b, the model takes the form:

where ya  and yb contain values of the dependent variable (adoption of mitigation prac-
tices) for participants and non-participants, respectively. The associated network autocor-
relation ρaa, ρbb, ρab, and ρbaare measured for the strength of autocorrelation within and 
between these sub-networks. When combined, they constitute a more differentiated test of 
H1, relaxing the assumption of a homogeneous network influence process. Further, ρba is 
a measure for the strength of autocorrelation acting on values yb of non-participants based 
on their relations to collective action participants. The posterior distribution of ρbathus tests 
for H3, the collective action spillover hypothesis.

(2)y = �Wy + X� + x�netknowledge ∗ �netknowledge + �, � ∼ N(0g, �2Ig)

(3)

y =

[

ya
yb

]

=

[

�aaWaa �abWab

�baWba �bbWbb

] [

ya
yb

]

+ X� + �

=

(

�aa

[

Waa 0

0 0

]

+ �bb

[

0

0

0

Wbb

]

+ �ab

[

0 Wab

0 0

]

+ �ba

[

0 0

Wba 0

] ) [

ya
yb

]

+ X� + �

2 Note that there is an alternative variant of the model in which autocorrelation is modeled by specify-
ing autocorrelation in the error terms and which has a slightly different interpretation (see, e.g., Leenders 
(2002)).
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The fourth model includes βnet _ knowledge  to assess the extent to which the collective 
spillover effect might be due to unevenly distributed knowledge throughout the sub-net-
works and vice versa. This can be tentatively assessed in the change in ρba after adjusting 
for βnet _ knowledge. The adjusted model takes the following form:

All models were fit using the code provided in Dittrich (2020), which implements a 
Metropolis-Hastings algorithm to obtain the posterior distribution of model parameters in 
the statistical programing environment R (R Core Team 2021). We used a recommended 
(multivariate) normal prior distribution with a mean of 0.1 and standard deviation of 1 for 
the network autocorrelation parameters and uninformative priors for all other parameters. 
We evaluated the model based on 5000 draws from the posterior (with a burn-in of 100 for 
the Metropolis-Hastings algorithm). All code and anonymized data needed to replicate the 
analysis, as well as additional sensitivity checks, can be accessed in a public, open reposi-
tory under https:// doi. org/ 10. 5281/ zenodo. 74013 18.

4  Case study

Our case study is located in the northern part of Canton Zurich in Switzerland. Agricul-
tural production is quite diverse and ranges from dairy and meat production to arable crops, 
viticulture, fruit, and vegetables (Kreft et al. 2021a). The region is home to the farmers’ 
initiative  AgroCO2ncept Flaachtal, which aims to collectively reduce agricultural GHG 
emissions.3 It is currently one of very few examples of collective climate change mitiga-
tion in agriculture. The project was founded in 2011 in a bottom-up process on the ini-
tiative of a single farmer, who was able to convince some colleagues to collaboratively 
reduce agricultural GHG emissions. Strategies for on-farm climate change mitigation were 
elaborated with the help of agricultural experts and extension services. In spring 2012, 
the project was opened for the participation of more farms. Since 2016, the Swiss Fed-
eral Office for Agriculture supports  AgroCO2ncept, guaranteeing financial support during 
6 years for a maximum of 30 participating farms (BLW 2018). Participation is independ-
ent of farm type, farming system, or current emission level. At present, 25 farmers on 23 
farms (two farms have multiple owners/managers) participate actively in  AgroCO2ncept.4 
The declared goal of  AgroCO2ncept is to achieve a 20% reduction in the aggregated overall 
GHG emissions from participating farms by 2022 as compared to 2016. This refers to an 
amount of 4500 t of  CO2-equivalents mitigated by the end of the 6-year project period. 
The project comprises a focus on 39 measures in different fields, i.e., crop production (14 

(4)

y =

[

ya
yb

]

=

[

�aaWaa �abWab

�baWba �bbWbb

] [

ya
yb

]

+ X� + x�netknowledge ∗ �netknowledge
+ �

=

(

�aa

[

Waa 0

0 0

]

+ �bb

[

0

0

0

Wbb

]

+ �ab

[

0 Wab

0 0

]

+ �ba

[

0 0

Wba 0

] ) [

ya
yb

]

+ X� + x�netknowledge ∗ �netknowledge
+ �

3 https:// www. agroc o2nce pt. ch
4 Since one farmer no longer actively participates but is still a passive member of the association, some-
times 26 participating farmers on 24 farms are mentioned. As the respective member did not participate in 
the interviews either, we refer here to only 25 active AgroCO2ncept members on 23 farms. The latter means 
that two farms have two farm managers each, i.e., in total 4 farmers manage 2 farms.

https://doi.org/10.5281/zenodo.7401318
https://www.agroco2ncept.ch
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measures), livestock farming (12), and energy use (13) (Kreft et al. 2020). When a farm 
joins the project, its current emission levels are assessed (status-quo assessment), and the 
farmer then receives extensive advisory service to choose the mitigation measures best 
suited to the farm’s specific structures and needs. The farmer receives a compensatory pay-
ment for each mitigation measure implemented. This procedure is designed to ensure miti-
gation efficiency tailored to the individual farm as no measures are stipulated and farmers 
can choose those most appropriate for their farm.

AgroCO2ncept aims to prove that practical on-farm climate change mitigation has large 
potential for an effective reduction of GHG emissions in the agricultural sector. The initia-
tive seeks to set an example for other farmers in the region and beyond. The central idea is 
that mitigation in agriculture cannot be achieved by single measures implemented by indi-
vidual farmers but demands collective action and aggregated reduction targets beyond the 
single farm level. At the same time, mitigation should not result in productivity or income 
losses  (AgroCO2ncept 2016).  AgroCO2ncept embodies the characteristics of a local col-
lective action scheme based on social ties among farmers and is perfectly suited as a case 
study for the hypotheses we want to test in this article.

5  Data collection and variables

5.1  Data collection

We interviewed 50 farmers, 25 of whom participate in the  AgroCO2ncept initiative and 25 
non-participants located in the same region. The 25 non-participating farmers were chosen 
based on their proximity to the region of Flaachtal, where most of the  AgroCO2nept farm-
ers are located. 5

Interviews were structured and conducted based on a questionnaire. The interviews took 
place in November and December 2019. They lasted between 20 and 40 minutes and were 
carried out on site by four trained interviewers. The questions were asked and simultane-
ously shown to the respondents on a tablet. Answers were directly entered via touch screen 
by the respondent or the interviewer.

We created the interview protocol using the newly developed digital network survey 
tool Network Canvas (https:// netwo rkcan vas. com). It is a free and open-source software 
designed to collect network data in a partly participatory way through intuitive and appeal-
ing visualizations and touch screen applications (Complex Data Collective  2016). This 
can help to make interviews less tedious and also reduces respondent burden (e.g., Eddens 
et al. 2017). Moreover, as the interviewees could enter certain answers themselves, particu-
larly those related to potentially sensitive network information, it was possible to reduce 
the effects of social desirability and satisficing, which can lead to data inaccuracy (Perry 
et al. 2018). Structure, user-friendliness, and understanding of the interview questionnaire 
were pre-tested with three social network experts and six students of agricultural sciences.

The questionnaire contained 29 questions for  AgroCO2ncept participants and 25 ques-
tions for non-participants and included the following sections: (i) personal characteristics 
of the respondent, (ii) agricultural climate change mitigation on the respondent’s farm, 

5 Figure S2 in the supplementary material shows a map with the spatial location of the interviewed farms.

https://networkcanvas.com
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(iii) roster6 and name generator questions to identify other farmers (alters) with whom the 
respondent communicates on agricultural climate change mitigation, including frequency 
of these exchanges, (iv) attributes of named alters (name interpreter), (v) relations among 
the named alters (alter-alter relations), and (vi) influential alters, based on the respond-
ent’s perception. An additional roster containing the names of all  AgroCO2ncept mem-
bers was presented to non-participants to assess the contact between non-participants and 
participants.

The complete questionnaires, all resulting data sets plus the codebooks explaining the 
variables, are available in Kreft et al. (2021b) and freely accessible on the ETH Research 
Collection: https:// www. resea rch- colle ction. ethz. ch/ handle/ 20. 500. 11850/ 458053.

We supplemented the tablet-based interview data by incorporating data from previous 
work. We were able to match the data of 46 of the 50 interviewees with existing data from 
a larger survey on farmers’ adoption of climate change mitigation measures and behavioral 
characteristics such as climate change concerns and non-cognitive skills, as well as census 
data on farm structures and demographics (Kreft et al. 2020).

5.2  Variables

Table 1 gives an overview of the variables used in our analysis as well as their summary 
statistics within our sample. More precisely, it shows the dependent variable of mitigation 
adoption and the relevant network variables as well as all additional covariates, i.e., farm-
ers’ behavioral characteristics, demographics, and farm structural characteristics. Details 
relating to the covariates included are presented in the supplementary material to this 
article.

The dependent variable of interest is defined as the share of mitigation measures 
adopted out of all those measures which are suitable for the farm type. In a previous sur-
vey, 13 mitigation measures were chosen based on GHG reduction potential, relevance, and 
suitability for Swiss agriculture (Kreft et  al. 2020).7 We use the frequency of exchanges 
regarding agricultural climate change mitigation as the basis for testing the endogenous 
network effect hypothesis (H1) which implies an association between strong social ties and 
the adoption of mitigation strategies. Frequency of exchange is assessed by an ordinal vari-
able with five levels.8 We conceptualize exchange as an inherently reciprocal concept and 
thus calculate the presence and strength of an undirected dyadic exchange relation Euij

 
between any two survey respondents  i and j, as the mean of their respective answers 
regarding the strength of their exchange Ed; thus, Euij

= Euji
=

Edji
+Edij

2
 . A value of 0 indi-

cates the absence of exchange. We row-standardized the undirected, weighted network 
adjacency matrix capturing the network of exchange relations among farmers (Leend-
ers 2002) to construct the 50×50 (given that n=50) weight matrix W.

We rely on the aggregate assessment of a farmer’s mitigation knowledge, as rated 
by others, to test the knowledge diffusion hypothesis (H2) which suggests an associa-
tion between the mitigation knowledge of network contacts and adoption of mitigation 

6 A roster is a list of names from which the interview participants are asked to choose their relevant con-
tacts. It can only be applied when the network boundary is clear and all overall network members are previ-
ously known.
7 For further information on mitigation measures, please refer to the supplementary material (Table S1).
8 1 = once per year; 2= every few months; 3 = once per month; 4 = once per week; 5= every day

https://www.research-collection.ethz.ch/handle/20.500.11850/458053
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strategies. Respondents were asked to evaluate their exchange partners’ knowledge about 
agricultural climate change mitigation on a 5-point ordinal variable (from knows noth-
ing to very knowledgeable). Since each farmer was rated on the basis of the mean score 
assigned to them by their various exchange partners, the score is a crowd-sourced assess-
ment of farmers’ knowledge, as evaluated by their peers. Finally, we calculated the sum 
of the knowledge scores of all peers to assess the combined knowledge of a farmer’s 
network contacts, the main point of interest for H2. This approach helps to corroborate 
farmers’ individual assessment of their peers’ knowledge and to obtain a more realistic 
estimate.

A binary variable was created for each farmer indicating participation (1) and non-
participation (0) in the collective action scheme  AgroCO2ncept to test the collective 
action spillover hypothesis (H3) relating to its potential impact on adoption of mitiga-
tion strategies over the wider network. Based on the network of exchange relations 
among farmers, this allows us to effectively divide the network into four components. 
One component describes the network of exchange relations among participants, a 
second component relates to networking among non-participants, and a third and 
fourth component cover networks (and hypothesized influence pathways) from par-
ticipants to non-participants and vice versa. Accordingly, the adjacency matrix W is 
rearranged into four weight matrices, which are separately row-standardized (Dittrich 
et al. 2020, p. 175).

6  Results

6.1  Descriptive network statistics

Table 2 summarizes the descriptive statistics of the total network and the two sub-networks 
(i.e.,  AgroCO2ncept participants and non-participants).

Each sub-network comprises 25 nodes (farmers). There are 133 edges (based on 
exchanges about climate change mitigation) between all farmers in the whole network, 
whereby the network of  AgroCO2ncept participants is much denser (74 ties) than that of 
non-participants (6 ties). This is partly due to the different approaches of data collection for 
the two groups of participants (roster vs. free name-generator). There are 53 ties between 
the two sub-networks. The majority of ties are workmates, club colleagues, and friends, 
while some of these also overlap (see Figure S3 in the supplementary material for more 
information on tie distribution and overlap). On average, ties are slightly stronger in the 
 AgroCO2ncept network (1.6), i.e., exchanges are more frequent than in the overall network 
(1.3).

Table 2  Statistics of farmers’ networks

Total network Network of  AgroCO2ncept 
participants

Network of 
non-partici-
pants

Number of nodes 50 25 25
Number of edges 133 74 6
Mean tie-strength 1.3 1.6 1.3
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The degree of centrality (between 0 and 1) depicts just how centralized a network is. 
A maximally centralized network is star-shaped with only one central actor connected 
to everyone else (Freeman 1979). The  AgroCO2ncept network is much more centralized 
(0.7) than the total network (0.4).9 This is mainly due to the fact that the initiative was 
originally set up and formed by one to three central actors (see Figure S4 in the sup-
plementary material for additional information on the distribution of degree centrality).

Figure  1 gives a visual impression of the networks. Black dots represent 
 AgroCO2ncept participants, and gray dots refer to non-participants. The ties connecting 
the farmers capture regular exchange about climate change mitigation and are weighted 
by frequency of contact. Larger nodes depict higher shares of adopted mitigation meas-
ures. As mentioned before, some ties exist between the two sub-groups, indicating a 
strong integration of  AgroCO2ncept members within the region.

Figure 2 shows four scatterplots capturing important features of farmers’ individual 
networks in relation to their mitigation adoption. The size of the network (number of 
ties) increases along the mitigation gradient, i.e., farmers who adopt more mitigation 
measures have larger exchange networks. The mean strength of all ties in a farmers’ net-
work is relatively independent of mitigation adoption with most farmers exchanging on 
mitigation with their peers once or a few times per year. Betweenness centrality measures 
the number of shortest paths that go through a node, in other words the extent to which 
the actor controls the flow of information within the network (Freeman  1979). In our 
sample, betweenness centrality of farmers increases with mitigation adoption, i.e., farm-
ers adopting more mitigation measures have more shortest paths going through them.

Moreover, the mean mitigation share of contacts correlates with farmers’ own mitiga-
tion: the contacts of high adopters have a higher share of adopted mitigation measures than 
the contacts of low adopters.

6.2  Network autocorrelation estimation results

Figure S6 shows the results of the four network autocorrelation models in the form of a 
coefficient plot. Our report covers the network variables of greatest interest. A coefficient 
plot with all covariates and a detailed table showing the coefficient magnitude and confi-
dence interval of all variables can be found in the supplementary material to this article 
(Figure S5 and Table S1).

Our results indicate that there is uncertainty regarding both the sign and magnitude of the 
endogenous network association effect (H1) specified as a homogenous process across the 
whole network (averaged network influence). The averaged mean of the network influence is 
around zero in both the simple influence model and also after adjusting for knowledge diffu-
sion ((1) and (2), Fig. 3)). It is just as likely to be positive as it is to be negative, and the 88% 
credible interval is evenly distributed around zero, containing both small and larger estimates.

We find a reliably positive effect for the association of aggregated knowledge about cli-
mate change mitigation in a farmer’s network contacts (H2) throughout both models con-
taining the parameter (knowledge diffusion model and fourth-order model plus knowledge 
diffusion ((2) and (4), Fig. 3)). The probability of a positive association is high. In terms 
of magnitude, the posterior mean indicates a relatively significant effect (the effect should 
be interpreted as the ceteris paribus change given a one standard deviation increase and 

9 However, the centralization of the network of non-participants should not be interpreted substantively, 
given the size of the network.
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considering that values of yi  can range between 0 and 1). However, the credible interval 
also contains relatively small parameters.

Moreover, we find evidence for the collective action hypothesis (H3) in both fourth-
order models ((3) and (4), Fig.  3)). It is almost certain that the relevant parameter ρab 
(influence of  AgroCO2ncept on non-participants network, Fig.  3) is positive, given the 

Fig. 1  Total network ties regarding regular exchange on agricultural climate change mitigation. Black dots 
represent  AgroCO2ncept participants, and gray dots represent non-participants. The size of the nodes rep-
resents the share of adopted mitigation measures. The strength of the connecting lines represents the fre-
quency of exchange

Fig. 2  Farmers’ individual mitigation adoption against different network traits. Black dots represent 
 AgroCO2ncept participants, and gray dots represent non-participants. The y-axis shows the share of adopted 
mitigation measures compared to the possibly relevant number of measures for the respective farm type. 
The x-axis represents four different characteristics of farmers’ personal networks: 1 undirected degree cen-
trality (number of ties), 2 undirected betweenness centrality (number of shortest paths going through the 
node), 3 share of adopted mitigation measures of contacts, and 4 share of adopted mitigation measures of 
contacts
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proportion of its posterior distribution which is positive. Again, the magnitude of the effect 
is slightly uncertain, given our sample size. Nevertheless, our models justify the assump-
tion of some, potentially influential, collective action spillover. Interestingly, the model 
results are much more inconclusive for all other network autocorrelation parameters in the 
fourth-order model. This would suggest that there is little endogenous network influence 
beyond the collective action spillover effect. This finding justifies the application of a net-
work autocorrelation model that can differentiate various influence processes and does not 
assume a uniform process acting throughout the network.

7  Discussion

Based on a regional case study, this article investigates the suggestion that farmers’ 
decisions on the adoption of climate change mitigation measures are influenced by the 
behavior and characteristics of their social network. We used a comprehensive data set 
comprising survey, census, and interview data. This means that the sample was rather 
small given the task of face-to-face interviews. However, it suffices for the purpose of 
this study, which aims to explore a specific regional famers’ network and local influ-
ence of the collective action initiative  AgroCO2ncept. In our model, we account for 
this using a Bayesian approach, which is ideal for small networks as it does not rely on 
asymptotic approximations for standard errors (Dittrich et  al. 2020). However, larger 

Fig. 3  Estimated posterior distribution of network-related parameters for the four models tested. Network 
influence parameters each capture the impact of the adoption of climate change mitigation measures in a 
farmer’s contact network on the farmer’s own adoption of measures, either on average across the whole 
network (averaged network influence) or within and between sub-networks. The parameter for knowledge of 
network contacts can be interpreted as the marginal effect of a one unit increase in knowledge about miti-
gation measures among a farmer’s network contacts on the share of adoption of climate change mitigation 
measures predicted for a farmer. Points represent median parameter estimates and horizontal spikes the 88% 
credible interval. Curves represent the distribution, with light gray areas for negative parameter values and 
dark gray areas for positive values. The posterior distribution for each parameter captures the uncertainty 
the model assigns to the parameter’s influence. For example, a relatively wide distribution centered around 
zero indicates that the model fit neither supports a strong belief in the parameter having a certain sign (posi-
tive or negative) nor in the magnitude of its effect. In contrast, for example, if the posterior distribution cov-
ers a smaller range of large values and contains only few negative values, the model fit supports a stronger 
belief in the effect being both large and positive
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studies would be needed to provide more conclusive evidence and reduce any remain-
ing doubts about the magnitude of estimated effects resulting from the smallness of our 
sample. The descriptive analysis of the entire network shows that  AgroCO2ncept par-
ticipants maintain closer connections with each other than non-participants. However, 
the comparison between the two groups must be treated with caution given the different 
approach applied for the network data collection:  AgroCO2ncept members were pro-
vided with a full roster containing the names of all other participants from which they 
could select the exchange contacts they considered relevant. In addition, they could 
name any other persons they thought appropriate. Since there was no pre-defined net-
work boundary for non-participants, they were asked to name, off-the-cuff, persons with 
whom they had regular exchanges on the topic. As it is far easier to identify names from 
a roster than to remember people spontaneously, this method can lead to potential recall 
bias (Brewer 2000). During the interviews, this effect was counteracted by prompting 
respondents and repeating the question several times (Adams et al. 2021).

The descriptive analysis of farmers’ individual networks revealed that, on average, farm-
ers with a larger exchange network adopt more mitigation measures. This is in line with 
previous literature showing a positive influence of social networks on, e.g., adoption of 
agri-environmental measures (e.g., Mathijs 2003; Moschitz et al. 2015; Riley et al. 2018; 
Schneider et al. 2009; van Dijk et al. 2015, 2016).

In addition, our detailed data set enabled us not only to explore potential endogenous 
network effects, i.e., the influence of the mitigation behavior of peers, but also to inves-
tigate exogenous network effects, i.e., the influence of certain characteristics of farmers’ 
contacts. This differentiation is quite important since we find no evidence for a uniform 
association between the mitigation adoption of peers and farmers’ own adoption across the 
whole network. However, we do find a positive association between adoption and strong 
ties to farmers who are knowledgeable about agricultural climate change mitigation.

In contrast to previous studies (Matuschke and Qaim 2009; Murendo et al. 2018), our 
findings indicate that adoption depends more strongly on mitigation knowledge existing 
within farmers’ personal networks than on the actual mitigation behavior of peers. How-
ever, the type of technology or practice may determine the extent to which the character-
istics of peers influence adoption (Murendo et al. 2018; Wuepper et al. 2017). We identify 
two main reasons which can possibly explain this phenomenon in the specific context of 
agricultural climate change mitigation. Firstly, the topic is still quite a relatively new, unex-
plored option for many farmers in Switzerland, and misconceptions regarding mitigation 
measures (e.g., their efficacy) represent one of the major barriers to adoption (Karrer 2012; 
Peter et  al. 2009). Consequently, information and social learning through knowledge 
exchange are crucial for mitigation adoption. Secondly, many agricultural mitigation prac-
tices are not specifically tailored to the reduction of GHG emissions but primarily target 
other agri-environmental objectives, e.g., no-tillage to increase soil fertility (Smith et  al. 
2007). This makes it difficult for farmers to recognize and imitate mitigation behavior of 
their peers and neighbors since it may not be easy to identify the implemented measures as 
such. Again, in this situation, an active exchange of knowledge could play a vital role in the 
adoption decision.

However, knowledge of peers is based on farmers’ statements and can thus be prone 
to measurement error since farmers might not be able to accurately assess their contacts’ 
mitigation knowledge. We try to counteract this potential inaccuracy by taking the mean 
of the knowledge ascribed to a person by all connected farmers in the network. Moreover, 
we argue that farmers’ perception of their peers’ knowledge is the relevant parameter for 
behavioral change (Matuschke and Qaim 2009).
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We also explored how the climate protection initiative  AgroCO2ncept influenced miti-
gation behavior of non-participating farmers in the region. Our findings indicate that miti-
gation by farmers who belong to  AgroCO2ncept has a positive impact on mitigation adop-
tion of connected farmers who are not part of the initiative. Hence, in addition to our first 
results, we find evidence for an endogenous network effect in part of the network (i.e., only 
from  AgroCO2ncept members to non-members). This is possibly explained by the fact that 
farming practices adopted by  AgroCO2ncept farmers are more clearly related to climate 
change mitigation since the project and its climate protection objectives are well known 
in the region. Thus, identification of mitigation measures, observation, and finally imita-
tion of measures implemented by  AgroCO2ncept members is easier than the observation 
of (potentially less obvious) mitigation behavior of peers who are not part of the initia-
tive. Hence, our result suggests a local spillover effect of the collective action initiative. 
Therefore, we also see our study as a contribution to the literature on the spread of col-
lective grassroots innovations, which is still relatively limited in the agricultural context 
(Ornetzeder and Rohracher 2013; Seyfang and Smith 2007; Vaiknoras et al. 2020).

Finally, social networks can help to overcome economic barriers of mitigation adoption 
through collaborative action (Bouamra-Mechemache and Zago 2015). This is particularly 
relevant where potentially high investments as well as transaction costs might prevent the 
adoption of climate change mitigation measures (Wreford et al. 2017).

8  Conclusions

In this article, we analyzed social network data of 50 farmers in a region of Switzerland and 
explored the relationship between social relations regarding knowledge exchange and the 
uptake of on-farm climate change mitigation. In general, we find that farmers with larger 
networks adopt more climate change mitigation measures. Our results indicate that the level 
of mitigation knowledge present within a farmer’s network is crucial for mitigation adop-
tion. However, it seems that farmers attach less importance to the actual mitigation behav-
ior of peers when deciding on their own adoption of mitigation measures. We also find that 
strong ties to members of the regional farmers’ initiative  AgroCO2ncept Flaachtal are posi-
tively associated with mitigation uptake, suggesting a local spillover effect. In contrast to 
our findings regarding the whole network, the actual mitigation behavior of  AgroCO2ncept 
members is relevant for the mitigation adoption of connected non-members.

Our findings have policy implications. We show that social network integration, and espe-
cially knowledge diffusion within such networks, can contribute to a better understanding of 
farmers’ decision-making with regard to climate change mitigation. This is particularly impor-
tant for effective policy designs aiming at a reduction of GHG emissions in agriculture. More 
specifically, policymakers should be aware of the relevance of social learning and informal 
knowledge exchange in farmers’ mitigation adoption. In a relatively new field of practice, such 
as on-farm climate change mitigation, accumulation and exchange of knowledge with well-
informed peers and neighbors can contribute to behavioral change. Therefore, the creation of 
(regional) networks and platforms for farmers focusing on and encouraging an active exchange 
about the reduction of agricultural GHG emissions is an essential step towards achieving the 
ambitious goals that have been set. Basically, while it is not possible to oblige people to learn 
from others, it is important to create the right environment for social learning to take place 
(Rist et  al. 2007). Farmers’ overall mitigation knowledge could be improved if agricultural 
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schools were to include climate change mitigation as a part of their general curriculum and 
extension agents included the topic regularly in their services.

Moreover, our findings suggest that promotion and support of regional (bottom-up) farm-
ers’ initiatives can be a useful tool for policymakers as it can generate behavioral change 
beyond the scope of the project itself. To this end, the goals and measures of these schemes 
should be communicated more widely so that others can learn by observing members’ prac-
tices. In addition to the benefits relating to social learning promotion and potential spillover 
effects, collective action is particularly promising as an effective and efficient path towards 
agricultural climate change mitigation since it also has considerable cost and risk reduction 
potential (Bouamra-Mechemache and Zago 2015; Hodge and McNally 2000).

Our study also has implications for future research. Findings show that social networks, 
and especially contact to well-informed peers, play an important role in farmers’ behav-
ioral change. This implies that relational data of this kind should be collected more regu-
larly and included in future research also beyond climate change mitigation, e.g., to explain 
farmers’ adoption of agri-environmental measures. Particularly, more studies on the influ-
ence of relevant characteristics of network connections (instead of their mere existence) 
can contribute to deeper understanding of farmers’ decision-making in response to their 
social environment. Additional data, e.g., on type of relationships or other sources of infor-
mation, could also aid interpretation of results and help to explain network structures more 
thoroughly. Moreover, future research on the economic and ecological potential of farmers’ 
collective action schemes is of particular relevance in the context of agricultural climate 
change mitigation.
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